Deep Learning Models and Fusion Classification Technique for Accurate Diagnosis of Retinopathy of Prematurity in Preterm Newborn

Author:

Salih NazarORCID,Ksantini MohamedORCID,Hussein Nebras,Halima Donia BenORCID,Abdul Razzaq Ali,Ahmed Sohaib

Abstract

  Retinopathy of prematurity (ROP) is the most common cause of irreversible childhood blindness, and its diagnosis and treatment rely on subjective grading based on retinal vascular features. However, this method is laborious and error-prone, so automated approaches are desirable for greater precision and productivity. This study aims to develop a deep learning-based strategy to accurately diagnose the plus disease of ROP in preterm newborns using transfer learning models and a fusion classification technique. The Private Clinic Al-Amal Eye Center in Baghdad, Iraq, provided us with 2776 ROP screening fundus images between 2015 and 2020, and the images were used to train three deep convolutional neural network models (ResNet50, Densenet161, and EfficientNetB5). A fusion classifier approach was used to merge the three models for a thorough and precise diagnosis. The three models have relative accuracy rates of 69.78%, 80.57 %, and 81.29 % in their respective classifications. The overall accuracy, however, increased to 90.28 percent when the fusion classifier was employed. This shows that the proposed method helps identify ROP in premature infants. The study's findings imply the proposed method has the potential to significantly enhance the precision and speed with which ROP is diagnosed, which in turn could lead to earlier detection and treatment of the illness and a decreased likelihood of childhood blindness.

Publisher

College of Science for Women

Subject

General Physics and Astronomy,Agricultural and Biological Sciences (miscellaneous),General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3