Interior Visual Intruders Detection Module Based on Multi-Connect Architecture MCA Associative Memory

Author:

Kareem Emad I AbdulORCID

Abstract

Most recent studies have focused on using modern intelligent techniques spatially, such as those developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the ability to learn and recognize what they had learned. The importance of developing such systems came after the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder detection module depending on Multi-Connect Architecture Associative Memory (MCA) has been proposed. Via using the MCA associative memory as a new trend, the proposed module goes through two phases: the first is the training phase (which is executed once during the module installation process) and the second is the analysis phase. Both phases will be developed through the use of MCA, each according to its process. The training phase will take place through the learning phase of MCA, while the analysis phase will take place through the convergence phase of MCA. The use of MCA increases the efficiency of the training process for the proposed system by using a minimum number of training images that do not exceed 10 training images of the total number of frames in JPG format. The proposed module has been evaluated using 11,825 images that have been extracted from 11 tested videos. As a result, the module can detect the intruder with an accuracy ratio in the range of 97%–100%. The average training process time for the training videos was in the range of 10.2 s to 23.2 s.

Publisher

College of Science for Women

Subject

General Physics and Astronomy,Agricultural and Biological Sciences (miscellaneous),General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3