Facial Emotion Images Recognition Based On Binarized Genetic Algorithm-Random Forest

Author:

Alzawali Murad Ibrahim Husin,Yusoff YuslizaORCID,Alwee Razana,Yunos Zuriahati Mohd,Talib Mohamad Shukor,Hassan Haswadi,AL-Dhief Fahad Taha,Albadr Musatafa Abbas Abbood,Alsemawi Majid Razaq Mohamed,Ahmad Sharifah Zarith Rahmah Syed

Abstract

يتم تقييم معظم أنظمة التعرف على مشاعر الوجه البشرية على أساس الدقة فقط، حتى لو كان يُعتقد أيضًا أن معايير الأداء الأخرى مهمة في عملية التقييم مثل الحساسية والدقة وقياس F ومتوسط G. علاوة على ذلك، فإن المشكلة الأكثر شيوعًا التي يجب حلها في أنظمة التعرف على عواطف الوجه هي طرق استخراج الميزات، والتي يمكن مقارنتها بطرق استخراج الميزات اليدوية التقليدية. هذه الطريقة التقليدية غير قادرة على استخراج الميزات بكفاءة. بمعنى آخر، هناك كمية زائدة من الميزات التي تعتبر غير مهمة، والتي تؤثر على أداء التصنيف. في هذا العمل، تم اقتراح نظام جديد للتعرف على مشاعر الوجه البشري من الصور. يتم استخدام HOG (الرسوم البيانية للتدرجات الموجهة) للاستخراج من الصور. بالإضافة إلى ذلك، يتم استخدام الخوارزمية الجينية الثنائية (BGA) كاختيار للميزات من أجل تحديد الميزات الأكثر فعالية لـ HOG. تعمل Random Forest (RF) كمصنف لفئات مشاعر الوجه لدى الأشخاص وفقًا لعينات الصور. أمثلة الوجه البشري للصور التي تم استخراجها من مجموعة بيانات Yale Face، حيث تحتوي على تعبيرات الوجه البشري الأحد عشر هي كما يلي؛ عادي، نور يسار، بلا نظارات، فرح، وسط نور، حزين، نعسان، غمز ومتفاجئ. يتم تقييم أداء النظام المقترح فيما يتعلق بالدقة والحساسية (أي الاستدعاء) والدقة وقياس F (أي درجة F1) ومتوسط G. أعلى دقة لطريقة BGA-RF المقترحة تصل إلى 96.03%. علاوة على ذلك، كان أداء BGA-RF المقترح أكثر دقة من نظيراته. وفي ضوء النتائج التجريبية، أثبتت تقنية BGA-RF المقترحة فعاليتها في التعرف على مشاعر الوجه البشري باستخدام الصور.

Publisher

College of Science for Women, University of Baghdad

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3