CFNN for Identifying Poisonous Plants

Author:

Hassoon Israa MohammedORCID,Hantoosh Shaymaa AkramORCID

Abstract

  Identification of poisonous plants is a hard challenge for researchers because of the great similarity between poisonous and non- poisonous plants. Traditional methods to identify poisonous plant can be tiresome, therefore, automated poisonous plants identification system is needed. In this work, cascade forward neural network framework is proposed to identify poisonous plants based on their leaves. The proposed system was evaluated on both (poisonous leaves/non-poisonous leaves) which are collected using smart phone and internet. Combination of shape features and statistical features are extracted from leaf then fed to cascade-forward neural network which used TRAINLM function for training. 500 samples of leaf images are used, 250 samples are poisonous, the remaining 250 samples are non-poisonous.300 samples used in training, 200 samples for testing. Our system is achieved an accuracy value of 99.5%.

Publisher

College of Science for Women

Subject

General Physics and Astronomy,Agricultural and Biological Sciences (miscellaneous),General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Poisonous Plants Detection Using Machine Learning;International Journal of Advanced Research in Science, Communication and Technology;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3