A Solar Photovoltaic Performance Monitoring and Statistical Forecasting Model Using a Multi-Layer Feed-Forward Neural Network and Artificial Intelligence

Author:

Kumaravel G.ORCID,Kirthiga S.,Al Shekaili Mohammed Mahmood Hamed,AL Othmani Qais Hamed Saif Abdullah

Abstract

إن الطبيعة الطبوغرافية لسلطنة عمان تجعل نظام الطاقة الشمسية خيارًا قابلاً للتطبيق وموثوقًا لإنتاج الطاقة بكميات كبيرة في سوق الطاقة المتجددة. تشهد العديد من المناطق الصحراوية في عمان مستويات عالية من الإشعاع الشمسي. وهذا مناسب للأنظمة الكهروضوئية لأن كفاءتها تعتمد بشكل أساسي على الإشعاع الشمسي. ومع ذلك، في التطبيقات في الوقت الفعلي، تؤثر العديد من العوامل البيئية على كفاءة الألواح الشمسية وبالتالي على أدائها. في هذه المقالة، تم اقتراح الشبكة الطبيعية (العصبية) الأمامية متعددة الطبقات (MFFN) لتتبع أداء نظام الطاقة الشمسية الكهروضوئية من أجل استبدال أو تحسين أداء نظام الطاقة الشمسية الكهروضوئية بناءً على حالته الحالية. يتم استخدام خوارزمية الانتشار العكسي (BPA) لتدريب MFFN.

Publisher

College of Science for Women, University of Baghdad

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3