Prediction of Thyroid Classes Using Feature Selection of AEHOA Based CNN Model for Healthy Lifestyle

Author:

Jopate RachappaORCID,Pareek Piyush Kumar,G DivyaJyothi M.,Al Hasani Ariam Saleh Zuwayid Juma

Abstract

كثيرًا ما يعاني الأشخاص الذين يعانون من قصور الغدة الدرقية من أعراض حادة. يؤدي التصنيف الصحيح والتعلم الآلي إلى تحسين تشخيص أمراض الغدة الدرقية بشكل كبير. سيؤثر هذا التصنيف الدقيق على تقديم الرعاية للمرضى في الوقت المناسب. على الرغم من وجود تقنيات التشخيص، فإنها تسعى في كثير من الأحيان إلى التصنيف الثنائي، وتستخدم مجموعات بيانات كبيرة غير كافية، وتفتقر إلى تأكيد استنتاجاتها. تركز الأساليب الحالية على تحسين النموذج، في حين يتم إهمال هندسة الميزات. يقدم هذا البحث نموذج خوارزمية تحسين قطيع الفيل التكيفي   AEHOA  لاختيار السمات المثالية من أجل التحايل على هذه القيود. في البداية، استخدم طريقة تسمى تقنية الإفراط في أخذ العينات للأقلية الاصطناعية  SMOTE  لتسوية البيانات. وأخيرًا، يتم إدخال معلمات نموذج AEHOA في الشبكة العصبية التلافيفية  CNN  لتصنيف البيانات وتعزيز التنبؤ. تمت أيضًا زيادة دقة تنبؤات التصنيف عن طريق تعديل مجموعة البيانات. تم إخضاع مجموعتي البيانات لعملية تصنيف لإجراء مقارنة أكثر دقة للنتائج.

Publisher

College of Science for Women, University of Baghdad

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3