Production of Biosynthesized Silver Nanoparticles using Metarhizium anisopliae fungus for the Treatment of Petroleum Pollutants in Water

Author:

Alnuaimi Marwah Th.ORCID,Aljanabi Zahraa ZahrawORCID,Mahmood Sarah IbrahimORCID,Ramzy Ula FarooqORCID

Abstract

In this study, a silver nanoparticle (AgNPs) was created using a biological technique from an extract of the fungus Metarhizium anisopliae. The characteristics of the prepared AgNPs were identified by utilizing the optical, ultraviolet, and infrared absorbance spectroscopy. The shape, size, and charge distribution on the particles were determined by using scanning electron microscopy and zeta voltage analysis. The analysis of biological activity of the silver nanoparticles showed its effectiveness in treating pollutants, as confirmed by the reduction of higher than 93% weight of crude oil in contaminated water samples. The crude oil mass was effectively transformed into the gelatinous mass that lacks consistency and emulsification. The chemical analysis of NP-treated and untreated crude oil- contaminated water samples was performed using gas chromatography mass spectrometry (GC MASS). The results displayed the emergence of 55 graphic peaks, each of them indicating a chemical compound, in the control sample, while in the study sample, about 51 of these peaks disappeared and the area of the remaining 4 peaks was reduced. The silver nanoparticles' capability to maintain their effectiveness under cryogenic storage conditions for six months was tested and compared to that of the fungal isolation before the production of the silver nanoparticles. The results showed no significant changes in the shape, size, and efficiency of the silver nanoparticles in the treatment of oil pollutants in water. The results indicated the higher efficiency of the silver nanoparticles, as compared to chemicals, in treating petroleum pollutants as well as enhancing the solubility, emulsification, and degradation of hydrocarbons.  In addition, the AgNPs are characterized by the availability of inexpensive, easy, fast to produce, and environmentally friendly production materials, as compared to the usage of chemical products that are highly toxic to aquatic organisms, expensive to produce, and highly accumulative in the ecosystem, i.e. environmentally unsafe.

Publisher

College of Science for Women

Subject

General Physics and Astronomy,Agricultural and Biological Sciences (miscellaneous),General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3