The Suggested Reciprocal Relationship between Maximum, Minimum and Optimum Usable Frequency Parameters Over Iraqi Zone

Author:

Hadi Khalid Abdul-KareemORCID,Abdulkareem Marwa D.ORCID

Abstract

In this work, the relationship between the ionospheric parameters (Maximum Usable Frequency (MUF), Lowest Usable Frequency (LUF) and Optimum working Frequency (OWF)) has been studied for the ionosphere layer over the Iraqi zone. The capital Baghdad (44.42oE, 33.32oN) has been selected to represent the transmitter station and many other cities that spread over Iraqi region have represented as receiver stations. The REC533 communication model considered as one of the modern radio broadcasting version of ITU has been used to calculate the LUF parameter, while the MUF and OWF ionospheric parameters have been generated using ASAPS international communication model which represents one of the most advanced  and accurate HF sky wave propagation models. The study has been conducted for the annual and seasonal time periods of the years (2009 and 2014) of the solar cycle 24. The results of the seasonal and annual tests have indicated that the interrelationship between the MUF and OWF with LUF was a fourth order polynomial equation, while the reciprocal relationship between the MUF and OWF was a simple relationship that could be represented by a linear regression equation. The reciprocal relationships between MUF, LUF and OWF parameters (present values) have shown a good fitting with the data generated using the international models (predicted values) and theoretical values calculated from the criterion equation.

Publisher

College of Science for Women

Subject

General Physics and Astronomy,Agricultural and Biological Sciences (miscellaneous),General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3