1. [1] Ali, S.T., Englis, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17 (4) (2005), 391-490. DOI 10.1142/S0129055X05002376 | MR 2151954 | Zbl 1075.81038
2. [2] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains. Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei
3. (9) Mat. Appl., 2002, pp. 165-181. MR 1984098
4. [3] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, pp. 151-211. MR 1943284
5. [4] Arnal, D., Cahen, M., Gutt, S.: Representations of compact Lie groups and quantization by deformation. Acad. R. Belg. Bull. Cl. Sc. 3e série LXXIV 45 (1988), 123-140. MR 1027456