Author:
Barber Ben,Erde Joshua,Keevash Peter,Roberts Alexander
Abstract
We obtain isoperimetric stability theorems for general Cayley digraphs on $\mathbb{Z}^d$. For any fixed $B$ that generates $\mathbb{Z}^d$ over $\mathbb{Z}$, we characterise the approximate structure of large sets $A$ that are approximately isoperimetric in the Cayley digraph of $B$: we show that $A$ must be close to a set of the form $kZ \cap \mathbb{Z}^d$, where for the vertex boundary $Z$ is the conical hull of $B$, and for the edge boundary $Z$ is the zonotope generated by $B$.
Reference28 articles.
1. B. Barber and J. Erde. Isoperimetry in integer lattices. Discrete Anal., 7, 2018.
2. S. Bezrukov. Isoperimetric problems in discrete spaces. Extremal Problems for Finite Sets, Bolyai Soc. Math. Stud. 3, pages 5991, 1994.
3. B. Bollobás and I. Leader. Compressions and Isoperimetric Inequalities. J. Comb. Theory Ser. A, 56:4762, 1991.
4. B. Bollobás and I. Leader. Edge-isoperimetric inequalities in the grid. Combinatorica, 11:299314, 1991.
5. A. Dinghas. Über einen geometrischen Satz von Wul für die Gleichgewichtsform von Kristallen. Z. Kristallogr., Mineral. Petrogr., 105, 1944.