Hamilton cycles in pseudorandom graphs

Author:

Glock Stefan,Correia David,Sudakov Benny

Abstract

Finding general conditions which ensure that a graph is Hamiltonian is a central topic in graph theory. An old and well known conjecture in the area states that any $d$-regular $n$-vertex graph $G$ whose second largest eigenvalue in absolute value $\lambda(G)$ is at most $d/C$, for some universal constant $C>0$, has a Hamilton cycle. We obtain two main results which make substantial progress towards this problem. Firstly, we settle this conjecture in full when the degree $d$ is at least a small power of $n$. Secondly, in the general case we show that $\lambda(G) \leq d/ C(\log n)^{1/3}$ implies the existence of a Hamilton cycle, improving the 20-year old bound of $d/ \log^{1-o(1)} n$ of Krivelevich and Sudakov. We use in a novel way a variety of methods, such as a robust P\'osa rotation-extension technique, the Friedman-Pippenger tree embedding with rollbacks and the absorbing method, combined with additional tools and ideas. Our results have several interesting applications, giving best bounds on the number of generators which guarantee the Hamiltonicity of random Cayley graphs, which is an important partial case of the well known Hamiltonicity conjecture of Lov\'asz. They can also be used to improve a result of Alon and Bourgain on additive patterns in multiplicative subgroups.

Publisher

Masaryk University Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A unified combinatorial view beyond some spectral properties;Journal of Algebraic Combinatorics;2024-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3