Author:
Kucheriya Gaurav,Tardos Gábor
Abstract
The systematic study of Tur\'an-type extremal problems for edge-ordered graphs was initiated by Gerbner et al.\ in 2020. Here we characterize connected edge-ordered graphs with linear extremal functions. This characterization is similar in spirit to results of F\"uredi et al.\ (2020) about vertex-ordered and convex geometric graphs.
Reference7 articles.
1. P. Brass, Gy. Károlyi, P. Valtr, A Turán-type extremal theory of convex geometric graphs, Discrete and Computational Geometry--The Goodman-Pollack Festschrift (B. Aronov et al., eds.), Springer-Verlag, Berlin, 2003, 277-302.
2. B. Keszegh, D. Pálvölgyi, The number of tangencies between two families of curves, manuscript, arXiv:2111.08787.
3. Z. Füredi, A. Kostochke, D. Mubayi, J. Verstraëte, Ordered and convex geometric trees with linear extremal function, Discrete & Computational Geometry 64 (2020), 324-338.
4. D. Gerbner, A. Methuku, D. Nagy, D. Pálvölgyi, G. Tardos, M. Vizer, Edge-ordered Turán problems, Journal of Combinatorial Theory, Ser. B 160 (2023), 66-113.
5. G. Kucheriya, Master's thesis, Moscow Institute of Physics and Technology, 2021.