Upper bounds on Ramsey numbers for vector spaces over finite fields

Author:

Frederickson Bryce,Yepremyan Liana

Abstract

For $B \subseteq \mathbb F_q^m$, let $\exaff(n,B)$ denote the maximum cardinality of a set $A \subseteq \mathbb F_q^n$ with no subset which is affinely isomorphic to $B$. Furstenberg and Katznelson proved that for any $B \subseteq \mathbb F_q^m$, $\exaff(n,B)=o(q^n)$ as $n \to \infty$. For certain $q$ and $B$, some more precise bounds are known. We connect some of these problems to certain Ramsey-type problems, and obtain some new bounds for the latter. For $s,t \geq 1$, let $R_q(s,t)$ denote the minimum $n$ such that in every red-blue coloring of one-dimensional subspaces of $\mathbb F_q^n$, there is either a red $s$-dimensional subspace of $\mathbb F_q^n$ or a blue $t$-dimensional subspace of $\mathbb F_q^n$. The existence of these numbers is implied by the celebrated theorem of Graham, Leeb, Rothschild. We improve the best known upper bounds on $R_2(2,t)$, $R_3(2,t)$, $R_2(t,t)$, and $R_3(t,t)$.

Publisher

Masaryk University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3