Author:
Damásdi Gábor,Frankl Nora,Pach Janos,Pálvölgyi Dömötör
Abstract
For $k\geq 3$, call a $k$-tuple $(d_1,d_2,\dots,d_k)$ with $d_1\geq d_2\geq \dots \geq d_k>0$ and $\sum_{i=1}^k d_i=1$ a \emph{Ramsey $k$-tuple} if the following is true: in every two-colouring of the circle of unit perimeter, there is a monochromatic $k$-tuple of points in which the distances of cyclically consecutive points, measured along the arcs, are $d_1,d_2,\dots,d_k$ in some order. By a conjecture of Stromquist, if $d_i=\frac{2^{k-i}}{2^k-1}$, then $(d_1,\dots,d_k)$ is Ramsey. Our main result is a proof of the converse of this conjecture. That is, we show that if $(d_1,\dots,d_k)$ is Ramsey, then $d_i=\frac{2^{k-i}}{2^k-1}$. We do this by finding connections of the problem to certain questions from number theory about partitioning $\mathbb{N}$ into so-called \emph{Beatty sequences}. We also disprove a majority version of Stromquist's conjecture, study a robust version, and discuss a discrete version.
Reference16 articles.
1. E. Altman, B. Gaujal, and A. Hordijk: Balanced sequences and optimal routing, J. ACM, 47(4), 752-775, 2000, ACM New York, NY, USA.
2. J. Barát and P. P. Varjú: Partitioning the positive integers to seven Beatty sequences, Indag. Math. (N.S.), 14(2), 149-161, 2003, Elsevier.
3. S. Beatty, N. Altshiller-Court, O. Dunkel, A. Pelletier, F. Irwin, J. L. Riley, P. Fitch, and D. M. Yost: Problems for Solutions: 3173-3180, Amer. Math. Monthly, 33(3), 159-159, 1926, Mathematical Association of America.
4. A. Bialostocki and M. J. Nielsen: Minimum sets forcing monochromatic triangles, Ars Combin., 81, 297-304, 2006, Waterloo [Ont.] Dept. of Combinatorics and Optimization, University of Waterloo.
5. I. G. Connell: Some properties of Beatty sequences I, Canad. Math. Bull., 2(3), 190-197, 1959, Cambridge University Press.