Kneser graphs are Hamiltonian

Author:

Merino Arturo,Namrata ,Namrata

Abstract

For integers~$k\geq 1$ and $n\geq 2k+1$, the Kneser graph~$K(n,k)$ has as vertices all $k$-element subsets of an $n$-element ground set, and an edge between any two disjoint sets. It has been conjectured since the 1970s that all Kneser graphs admit a Hamilton cycle, with one notable exception, namely the Petersen graph~$K(5,2)$. This problem received considerable attention in the literature, including a recent solution for the sparsest case $n=2k+1$. The main contribution of this paper is to prove the conjecture in full generality. We also extend this Hamiltonicity result to all connected generalized Johnson graphs (except the Petersen graph). The generalized Johnson graph~$J(n,k,s)$ has as vertices all $k$-element subsets of an $n$-element ground set, and an edge between any two sets whose intersection has size exactly~$s$. Clearly, we have $K(n,k)=J(n,k,0)$, i.e., generalized Johnson graph include Kneser graphs as a special case. Our results imply that all known families of vertex-transitive graphs defined by intersecting set systems have a Hamilton cycle, which settles an interesting special case of Lov\'asz' conjecture on Hamilton cycles in vertex-transitive graphs from~1970. Our main technical innovation is to study cycles in Kneser graphs by a kinetic system of multiple gliders that move at different speeds and that interact over time, reminiscent of the gliders in Conway's Game of Life, and to analyze this system combinatorially and via linear algebra.

Publisher

Masaryk University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3