Author:
Bradshaw Peter,Masařík Tomáš
Abstract
We consider the \emph{single-conflict coloring} problem, in which each edge of a graph receives a forbidden ordered color pair. The task is to find a vertex coloring such that no two adjacent vertices receive a pair of colors forbidden at an edge joining them. We show that for any assignment of forbidden color pairs to the edges of a $d$-degenerate graph $G$ on $n$ vertices of edge-multiplicity at most $\log \log n$, $O(\sqrt{ d } \log n)$ colors are always enough to color the vertices of $G$ in a way that avoids every forbidden color pair. This answers a question of Dvořák, Esperet, Kang, and Ozeki for simple graphs (Journal of Graph Theory 2021).
Reference16 articles.
1. Ron Aharoni, Eli Berger, Maria Chudnovsky, Frédéric Havet, and Zilin Jiang. Cooperative colorings of trees and bipartite graphs. Electron. J. Combin., 27(1):Paper 1.41, 2020. doi:10.37236/8111.
2. Jurgen Aliaj and Michael Molloy. Adaptable and conflict colouring multigraphs with no cycles of length three or four, 2021. arXiv:2107.04253.
3. Peter Bradshaw and Tomáš Masařík. Single-conflict colorings of degenerate graphs, 2021. arXiv:2112.06333.
4. Zdeněk Dvořák, Louis Esperet, Ross J. Kang, and Kenta Ozeki. Single-conflict colouring. J. Graph Theory, 97(1):148-160, 2021. doi:10.1002/jgt.22646.
5. Zdeněk Dvořák and Luke Postle. Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8. J. Combin. Theory Ser. B, 129:38-54, 2018. doi:10.1016/j.jctb.2017.09.001.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献