Author:
Bonamy Marthe,Heinrich Marc,Legrand-Duchesne Clément,Narboni Jonathan
Abstract
We prove that for any $\varepsilon>0$, for any large enough $t$, there is a graph $G$ that admits no $K_t$-minor but admits a $(\frac32-\varepsilon)t$-colouring that is ``frozen'' with respect to Kempe changes, i.e. any two colour classes induce a connected component. This disproves three conjectures of Las Vergnas and Meyniel from 1981.