Není hvězda jako hvězda: identifikace klíčových aktérů v sociálních sítích

Author:

Diviák Tomáš

Abstract

The concept of centrality and centrality measures are well-known and frequently used in social network analysis. They are also implemented in numerous software packages. However, that does not mean that it is easy to apply them correctly. This paper aims to introduce the most frequently used centrality measures, but more importantly to point out the problems related to their application and to sketch potential solutions for these problems. First, three basic centrality measures are introduced: degree, betweenness, and closeness. There are three broad categories of issues with centrality measures. These categories are: inadequate operationalisation of centrality measures, explanation of their distribution, and interdependence of observation in statistical modelling. A typology of flows in the network is presented as a potential solution allowing for transparent operationalisation. The so-called positional approach is another potential solution allowing for conceptually and computationally rigorous definition of centrality measures. Lastly, statistical models for network data are introduced as a way to deal with interdependence of observations. In the conclusion, challenges for measuring centrality in bipartite and multiplex networks are discussed.

Publisher

Masaryk University Press

Subject

General Social Sciences

Reference61 articles.

1. BARABÁSI, Albert-László. 2005. V pavučině sítí. Praha: Paseka.

2. BARABÁSI, Albert-László a Réka ALBERT. 1999. "Emergence of Scaling in Random Networks." Science 286(5439): 509-512 (https://doi.org/10.1126/science.286.5439.509).

3. BATAGELJ, Vladimir a Andrej MRVAR. 1996. Pajek-Program for Large Network Analysis (http://vlado.fmf.uni-lj.si/pub/networks/pajek/).

4. BATTISTON, Federico, Vincenzo NICOSIA a Vito LATORA. 2014. "Structural Measures for Multiplex Networks." Physical Review E 89: 032804 (https://doi.org/10.1103/PhysRevE.89.032804).

5. BENJAMIN, Daniel. J., James O. BERGER., Magnus JOHANESSON a kol. 2017. "Redefine Statistical Significance." Nature Human Behaviour 2: 6-10 (https://doi.org/10.1038/s41562-017-0189-z).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3