Bioremediation of Hydrocarbon Contaminated Soil: Assessment of Compost Manure and Organic Soap

Author:

Uguru Hilary,O. I. Akpokodje,

Abstract

This study was carried out to investigate the effect of compost manure and organic soap on hydrocarbon degradation in petroleum products contaminated soil. 10 kg of top soil collected at a depth of 0-20 cm, air dried and sieved, were poured into plastic containers. The soil samples were was pounded with 1 L of spent engine oil, 1 L of kerosene, 1 L of petrol and 1 L of diesel daily for five days. The containers were placed under natural environmental conditions for three weeks to enable full acclimatization of the petroleum products with the soil. A completely randomized design comprising T1 (Polluted soil without treatment ‘control’); T2 (10 kg contaminated soil + 500 g organic soap); T3 (10 kg contaminated soil + 500 g compost manure); and T4 (10 kg contaminated soil + 500 g compost manure + 500 g organic soap) was used for this study. Some physical characteristics (soil porosity and specific gravity) and Total Hydrocarbon Content (THC) of the soil samples were tested for, after the full acclimatization of the soil samples, and at the end of the 10 week experimental period, in accordance with standard methods. Results of the study showed that addition of the compost manure and organic soap the contaminated soil samples significantly (p ≤0.05) degraded the THC, and improved the soil physical characteristics. The result showed that the combination of compost manure and organic soap gave the best remediation result (from 957.21 mg/kg to 154.36 mg/kg), followed by organic soap (from 957.21mg/kg to 203.61 mg/kg), and then compost manure (from 957.21 mg/kg to 262.03 mg/kg). At the end of the experimental period, vegetative growth was observed in the treated soil samples; whereas,  in the control soil samples vegetative growth was absent. Results obtained from this study have shown that amending petroleum products contaminated soils with compost manure and organic soap will enhance remediation of petroleum products contaminated sites.

Publisher

Scholar Publishing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3