Deformation of the Date Palm tree trunk in Dammam Metropolitan Area: causes and consequences

Author:

Al-Sulbi Ali OmarORCID

Abstract

Date palm (Phoenix dactylifera) is one of the elegant trees that performs several landscaping functions. Its single trunk textured by bases of the cut leaves distinguishes it from other ornamental trees. This cylindrical textured trunk is one of the major attractive features emphasized the use of date palms as ornamental landscaping trees. Across the Kingdom of Saudi Arabia, Date palms in public landscaping schemes have experienced deformation of their trunks. This is a function of several factors related to plantation, irrigation, and maintenance. This research to investigate and categorise the causes, types, and forms of date palm trees‘ trunks deformation. Prior to a field survey, a randomly conducted pilot survey to collect data from different areas where date palms are used as landscaping ornamental trees across the Dammam Metropolitan Area (DMA). It applies direct observation, measuring and analysis to develop preliminary understanding of the phenomena; and apply its outcomes on a case study of the Dammam City Seafront (DCS). The result showed that date palm trees‘ trunks deformation has occurred at bottom, middle, and upper parts as results of several factors; and it is as high as almost 97% among investigated trees. However, 58% of deformation symptoms processes have been noticed on bottom third of the date palm trees‘ trunks, near soil surface; and 27.5% of them are in the King Abdullah Seafront Park (KASP). The study proves statistically that sprinkler and bubbler irrigation systems are of major responsibility for near ground deformation of palm trees‘ trunks, which expands at rate of 3.5 and 3.3 CM/Year.

Publisher

Landscape Online

Subject

Nature and Landscape Conservation,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3