Low-Frequency Guided Wave Quantitative Reconstruction of Corrosion in Plates, 1D Diffraction Problem

Author:

Cailly William,Walaszek Henri,Brzuchacz Sébastien,Zhang Fan,Lasaygues Philippe

Abstract

Guided Wave Tomography is a nondestructive imaging technique that consists in inverting guided wave propagation data to localize defects. In particular, this technique should provide quantitative information about the corrosion state of metallic plates by reconstructing a thickness map from diffraction or time-of-flight measurements. In this paper we first present an analytical framework for corrosion profile reconstruction considering the 1D case. Due to the fact that, in practice, the low frequency ultrasound range (typically 50 to 100 kHz) is used for long range inspections, the first-order shear deformation approximation is relevant for plate thicknesses encountered in metallic structures. This leads to an analytical description of guided wave phenomena: diffraction, refraction and mode conversion, for 5 modes: A0, S0, SH0, A1 and SH1. The validity of an analytical approach to modeling thickness loss defects, in particular the validity of the first Born approximation, is discussed by comparing with elastodynamic numerical results. The comparison results show that the nonlinear behavior with depth increase, or width increase, of the defects (distortion) can be fully described using a multimodal high order Born series. Consequently, a consistent iterative inversion Born series based algorithm can be used to deal with the reconstruction of strong thickness losses.

Publisher

Wissenschaftliche Verlagsgesellschaft mbH

Subject

Music,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3