Author:
Forssén Jens,Mauriz Laura Estévez,Torehammar Clas,Jean Philippe,Axelsson Östen
Abstract
Field measurements and numerical modelling were used to study the acoustic performance of a low screen in an urban road setting. The results show the usefulness of low screens as well as suggests improvements in screen design. For the measurements, an acoustic screen built up from concrete
modules was temporarily installed beside a small park on the reservation between a two-lane road and a track for walking and cycling. A larger traffic system, of which the two-lane road is a part, determines the daytime equivalent noise level within the urban area. The screen height was about
1.4 m as measured from the level of the road surface and the width of the screen top was 0.3 m. Measurements were carried out both at 20 m distance from the road (within the park) and at 5 m distance from the road (at the cycle track). Insertion loss in maximum level, using controlled lightvehicle
pass-by at 50 km/h, was measured to 10 dB at 5 m distance and to 6 dB at 20 m distance, at 1.5 m height. Insertion loss in equivalent level was measured within the park to 4 dB at 1.5 m height. A listening experiment confirmed a perceived improvement from installing the screen. The measured
results were also compared with predicted results using a boundary element method (BEM) and a noise mapping software, the latter showing good agreement, overestimating the equivalent level insertion loss by 1 dB in the park. The BEM comparison showed reasonable agreement in maximum level insertion
loss considering that facade reflections were excluded, with an overestimation of 5 dB at the cycle track, and good agreement in the park, overestimating by up to 1 dB the equivalent and maximum level insertion losses. BEM predictions were used to also investigate other screen designs, showing
a positive effect of an acoustically soft screen top, significant for a screen width of 0.2 m and increasing for wider screens.
Publisher
Wissenschaftliche Verlagsgesellschaft mbH
Subject
Music,Acoustics and Ultrasonics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献