Population expansion and genetic structure in Cephalocereus nizandensis (Cactaceae), a microendemic cactus of rocky outcrops of the Tehuantepec basin, Mexico

Author:

Juárez-Miranda Aldo Isaac,Cornejo-Romero Amelia,Vargas-Mendoza Carlos Fabián

Abstract

Background and aims – Cephalocereus nizandensis is a microendemic columnar cactus that grows isolated in xerophytic enclaves associated with rocky outcrops in the Isthmus of Tehuantepec, in the south of Mexico. Its demographic history and genetic structure were assessed to determine the main events that shaped its current restricted distribution.Material and methods – Chloroplast intergenic sequences of 40 individuals and inter simple sequence repeats (ISSRs) of 45 individuals from four isolated populations were used to estimate haplotypic and nucleotide diversity, using expected heterozygosity and the Shannon index. AMOVA, population pair-wise FST, and Bayesian clustering analyses were performed to explore the genetic structure. Demographic history was estimated with neutrality tests, mismatch distribution analysis, and Bayesian skyline plots. Phylogenetic relationships and divergence times were determined using a median joining network and a Bayesian molecular clock.Key results – C. nizandensis has a high diversity and moderate genetic differentiation. The lowest elevation locality was found to be the most genetically distinct. The species has undergone a process of population expansion that began 150,000 years ago and has remained without evidence of a population contraction in the transition from the Pleistocene to the Holocene (11,700 years ago).Conclusions – C. nizandensis presents moderate but significant genetic differentiation, which may be due to an early divergence of its populations. Currently observed levels of genetic diversity are the result of historical maintenance of high population sizes and a population expansion approximately in the last 150,000 years, which was sustained independently of the climatic fluctuations of the Early Quaternary, due in part to the stability of the rocky habitat.

Publisher

Agentschap Plantentuin Meise

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3