Diabetes mellitus — metabolic preconditioning in protecting the heart from ischemic damage?

Author:

Kondratieva D. S.1ORCID,Afanasiev S. A.1ORCID,Muslimova E. F.1ORCID

Affiliation:

1. Cardiology Research Institute, Tomsk National Research Medical Center

Abstract

The negative impact of diabetes mellitus (DM) on the cardiovascular system has been confirmed by numerous clinical studies. However, there are experimental studies that show an increase in the resistance of the heart to ischemic and reperfusion damage in animals with DM. This phenomenon is characterized by a smaller size of the infarct zone, better preservation of the contractile function of the myocardium, and a lower incidence of ischemic and reperfusion arrhythmias. It is assumed that at a certain stage in the development of DM, a “metabolic window” is formed, in which metabolic alterations at the cellular level trigger adaptive mechanisms that increase the viability of cardiomyocytes. Published data confirm that the magnitude of the protective effect induced by DM is comparable to, and in some cases even exceeds, the effect of the preconditioning phenomenon. It is recognized that the mechanisms that protect the heart from ischemic and reperfusion damage against the background of DM are universal and are associated with the modulation of the antioxidant system, apoptosis factors, pro-inflammatory cytokines, and signaling systems that ensure cell survival. The one of the main pathogenic factor in DM is hyperglycemia, but under stress it plays the role of an adaptive mechanism aimed at meeting the increased energy demand in pathological conditions. Probably, at a certain stage of DM, hyperglycemia becomes a trigger for the development of protective effects and activates not only signaling pathways, but also the restructuring of energy metabolism, which makes it possible to maintain ATP production at a sufficient level to maintain the vital activity of heart cells under ischemia/reperfusion conditions. It is possible that an increased level of glucose, accompanied by the activation of insulin-independent mechanisms of its entry into cells, as well as the availability of this energy substrate, will contribute to a better restoration of energy production in heart cells after a infarction, which, in turn, will significantly reduce the degree of myocardial damage and will help preserve the contractile function of the heart. Identification of the conditions and mechanisms of the cardioprotective phenomenon induced by DM will make it possible to simulate the metabolic state in which the protection of cardiomyocytes from damaging factors is realized.

Publisher

Endocrinology Research Centre

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3