Clinical prediction model for MODY type diabetes mellitus in children

Author:

Laptev D. N.1ORCID,Sechko E. A.1ORCID,Romanenkova E. M.1ORCID,Eremina I. A.1ORCID,Bezlepkina O. B.1ORCID,Peterkova V. A.1ORCID,Mokrysheva N. G.1ORCID

Affiliation:

1. Endocrinology Research Centre

Abstract

BACKGROUND: MODY (maturity-onset diabetes of the young) is a rare monogenic form of diabetes mellitus, the gold standard of diagnosis is mutations detection in the genes responsible for the development of this form diabetes. Genetic test is expensive and takes a lot of time. The diagnostic criteria for MODY are well known. The development of clinical decision support system (CDSS) which allows physicians based on clinical data to determine who should have molecular genetic testing is relevant.AIM: Provided a retrospective analysis of clinical data of the patients with T1DM and MODY, from 0 to 18 years old, regardless of the duration of the disease to develop the model. Based on clinical data, a feedforward neural network (NN) was implemented - a multilayer perceptron.MATERIALS AND METHODS: Development of the most effective algorithm for predicting MODY in children based on available clinical indicators of 1710 patients with diabetes under the age of 18 years using a multilayer feedforward neural network.RESULTS: The sample consisted of 1710 children under the age of 18 years with T1DM (78%) and MODY (22%) diabetes. For the final configuration of NS the following predictors were selected: gender, age at passport age, age at the diagnosis with DM, HbA1c, BMI SDS, family history of DM, treatment. The performance (quality) assessment of the NN was carried out on a test sample (the area under the ROC (receiver operating characteristics) curve reached 0.97). The positive predictive value of PCPR was achieved at a cut-off value of 0.40 (predicted probability of MODY diabetes 40%). At which the sensitivity was 98%, specificity 93%, PCR with prevalence correction was 78%, and PCR with prevalence correction was 99%, the overall accuracy of the model was 94%.Based on the NN model, a CDSS was developed to determine whether a patient has MODY diabetes, implemented as an application.CONCLUSION: The clinical prediction model MODY developed in this work based on the NN, uses the clinical characteristic available for each patient to determine the probability of the patient having MODY. The use of the developed model in clinical practice will assist in the selection of patients for diagnostic genetic testing for MODY, which will allow for the efficient allocation of healthcare resources, the selection of personalized treatment and patient monitoring.

Publisher

Endocrinology Research Centre

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3