Telomere biology and metabolic disorders: the role of insulin resistance and type 2 diabetes

Author:

Dudinskaya Ekaterina N.1ORCID,Tkacheva Olga N.1ORCID,Brailova Natalia V.1ORCID,Strazhesko Irina D.1,Shestakova Marina V.2ORCID

Affiliation:

1. Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation “Russian Gerontology Research and Clinical Centre”

2. The National Medical Research Center for Endocrinology of Ministry of Health of Russian Federation

Abstract

BACKGROUND: Insulin resistance accelerates the aging process, but its speed depends on the individual characteristics of the metabolism. One of the reasons for the different aging rates in individuals with insulin resistance is the initially different “genetic protection” of cells, which many scientists associate with replicative cellular aging.AIMS: to study the relationship between the state of carbohydrate metabolism and markers of replicative cell aging in individuals with different sensitivity to insulin.MATERIALS AND METHODS: The observation study included 305 patients. The parameters of glucose metabolism and telomere biology were studied.RESULTS: The mean age of the patients was 51.5±13.3 years. Patients were divided into three groups depending on presence of insulin resistance: healthy, with insulin resistance and with type 2 diabetes. The mean age of healthy patients was 48.82±13.87 years, in insulin resistance group — 53.04±12.8, in 2 diabetes mellitus — 58.4±7.90. The median telomere length was 9.76. The median telomerase activity was 0.48. Both telomere length and telomerase activity progressively decrease as insulin resistance increases. In patients with diabetes, short telomere lengths and low telomerase activity predominated. The insulin resistance index has the greatest impact on the risk of detecting “short” telomeres. In patients with insulin resistance, an increase in glycated hemoglobin increases the likelihood of detecting short telomeres by 2.4 times, and in diabetes mellitus by 4.26 times, an increase in fasting plasma glucose by 90%, and an increase in HOMA-IR by 35%. An increase in insulin resistance increases the risk of detecting «low» telomerase activity by 53% and the risk of detecting «very low» telomerase activity by 92%. A decrease in synsulin resistance increases the chance of increasing telomerase activity to «very high» by 51%.CONCLUSION: Shorter telomeres are associated with more pronounced disorders of carbohydrate metabolism and a higher degree of insulin resistance. Further studies of metabolic status are necessary to personalize their lifestyle and treatment goals.

Publisher

Endocrinology Research Centre

Subject

Endocrinology, Diabetes and Metabolism

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3