Abstract
Until recently, in was believed that degradation of insulin is the main function of the kidneys in maintaining glucose homeostasis. The results of numerous studies showed that the kidneys are involved in filling the energy needs of the body due to the following three key processes: gluconeogenesis, uptake and reabsorption of glucose molecules. The characteristic feature of gluconeogenesis that occurs in the kidneys lies in the fact that it depends on the time elapsed since the last meal. Thus, gluconeogenesis that occurs in the cortical substance of the kidneys provides up to 90% of the glucose entering the blood in the post-absorptive period and up to 60% in the postprandial period. Glucose reabsorption from the glomerular filtrate occurs in the proximal convoluted tubules assisted by sodium-glucose cotransporters, sodium-glucose cotransporters 2 (SGLT2) being the most important of them. It is known that the cells of the proximal convoluted tubules of the kidneys in patients with type 2 diabetes mellitus (DM2) contain significantly more SGLT2 proteins compared to those of healthy individuals. The discovery of the important role of the kidneys in glucose homeostasis led to investigation of the new links in DM2 pathogenesis and the development of a promising approach to its treatment using SGLT2 inhibitors.
Publisher
Endocrinology Research Centre
Subject
Endocrinology, Diabetes and Metabolism
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献