Comment tirer le meilleur parti des données ?

Author:

Lacroux Alain

Abstract

La GRH est significativement impactée par la révolution des « big data » : l’accumulation de masses de données importantes sur les salariés apparaît aujourd’hui dans le discours de certains observateurs comme une condition nécessaire et suffisante pour la construction de modèles prédictifs de comportements complexes au travail comme l’absentéisme ou la performance en poste. En réalité, les enjeux majeurs ne tournent pas autour de la quantité des données, mais concernent plutôt les méthodologies permettant la transformation de ces données en connaissance, si possible actionnable. Les réflexions sur les méthodes applicables pour relever ce défi sont relativement récentes, et mentionnent régulièrement un renouveau de l’empirisme dans un « quatrième paradigme » fondé sur l’exploitation intensive et « agnostique » de masses de données en vue de faire émerger des connaissances nouvelles, selon une logique purement inductive. Sans adopter ce point de vue spéculatif, force est de constater que les approches inductives basées sur les données (data driven) demeurent rares dans les études quantitatives en GRH. Il existe pourtant des méthodes bien établies, notamment dans le domaine de la fouille de données (data mining), qui reposent sur des approches inductives. Ce domaine de l’analyse quantitative à visée inductive demeure encore assez peu exploré en GRH (à l’exception des analyses typologiques). L’objectif de cet article est tout d’abord de dresser un panorama des méthodes mobilisables pour des recherches en GRH, avant de proposer une illustration empirique qui consiste en une recherche exploratoire combinant une analyse en profils latents et une exploration des profils obtenus par des modèles graphiques gaussiens.

Publisher

CAIRN

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3