Time-series Forecasting of Energy Demand in Electric Vehicles and Impact of the COVID-19 Pandemic on Energy Demand

Author:

CİHAN Pinar1ORCID

Affiliation:

1. TEKIRDAG NAMIK KEMAL UNIVERSITY

Abstract

The increase in environmental problems such as climate change and air pollution caused by global warming has risen the popularity of electric vehicles (EVs) used in the smart grid environment. The increasing number of EVs can affect the grid in terms of power loss and voltage bias by changing the existing demand profile. Effective predicting of EVs energy demand ensures reliability and robustness of grid use, as well as aiding investment planning and resource allocation for charging infrastructures. In this study, the electricity demand amounts in two different cities are modeled by Support Vector Regression, Random Forest, Gauss Process, and Multilayer Perceptron algorithms. The findings reveal that electric vehicle owners usually start to charge their vehicles during the daytime, the COVID-19 pandemic causes a serious decrease in EVs energy demand, and the support vector regression (SVR) is more successful in energy demand forecasting. Furthermore, the results indicate that the decrease in electricity demand during the COVID-19 pandemic caused reduces in the prediction accuracy of the SVR model (decrease of 17.1% in training and 12.6% in test performance, P

Publisher

Sakarya University Journal of Computer and Information Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3