The Role of Attention Mechanism in Generating Image Captions: An Innovative Approach with Neural Network-Based Seq2seq Model

Author:

Karaca Zeynep1ORCID,Daş Bihter2ORCID

Affiliation:

1. FIRAT ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ

2. FIRAT ÜNİVERSİTESİ

Abstract

Image-to-text generation contributes significantly across various domains such as entertainment, communication, commerce, security, and education by establishing a connection between visual and textual content through the creation of explanations. This process aims to transform image data into meaningful text, enhancing content accessibility, comprehensibility, and processability. Hence, advancements and studies in this field hold paramount importance. This study focuses on how the fusion of the Sequence-to-Sequence (Seq2seq) model and attention mechanism enhances the generation of more meaningful captions from images. Experiments conducted on the Flickr8k dataset highlight the Seq2seq model's capacity to produce captions in alignment with reference sentences. Leveraging the dynamic focus of the attention mechanism, the model effectively captures detailed aspects of images.

Publisher

Sakarya University Journal of Computer and Information Sciences

Reference35 articles.

1. [1] T. Alqahtani et al., The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research," Research in Social and Administrative Pharmacy, vol. 19, no. 8, pp. 1236–1242, Aug. 2023, doi: 10.1016/j.sapharm.2023.05.016.

2. [2] J. J. Cavallo, I. de Oliveira Santo, J. L. Mezrich, and H. P. Forman, Clinical Implementation of a Combined Artificial Intelligence and Natural Language Processing Quality Assurance Program for Pulmonary Nodule Detection in the Emergency Department Setting,Journal of the American College of Radiology, vol. 20, no. 4, pp. 438–445, Apr. 2023, doi: 10.1016/j.jacr.2022.12.016.

3. [3] J. Doe and A. Smith, "Recent Advances in Image Captioning: A Comprehensive Survey," IEEE Transactions on Artificial Intelligence, vol. 7, no. 3, pp. 210-225, 2022.

4. [4] M. Johnson, B. Brown, and C. Wilson, "Innovative Approaches for Image Caption Generation using Attention Mechanisms," Proceedings of the 35th Annual Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, 2021, pp. 750-760.

5. [5] S. Kim and E. Lee, "Enhancing Image Captioning Performance through Multimodal Fusion Techniques," IEEE Transactions on Multimedia, vol. 25, no. 6, pp. 1350-1365, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3