Abstract
Malaria is a disease caused by a parasite. The parasite is transmitted to humans through the bite of infected mosquitoes. Thousands of people die every year due to malaria. When this disease is diagnosed early, it can be fully treated with medication. Diagnosis of malaria can be made according to the presence of parasites in the blood taken from the patient. In this study, malaria detection and diagnosis study were performed using The Malaria dataset containing a total of 27,558 cell images with samples of equally parasitized and uninfected cells from thin blood smear slide images of segmented cells. It is possible to detect malaria from microscopic blood smear images via modern deep learning techniques. In this study, 5 of the popular convolutional neural network architectures for malaria detection from cell images were retrained to find the best combination of architecture and learning algorithm. AlexNet, GoogLeNet, ResNet-50, MobileNet-v2, VGG-16 architectures from pre-trained networks were used, their hyperparameters were adjusted and their performances were compared. In this study, a maximum 96.53% accuracy rate was achieved with MobileNet-v2 architecture using the adam learning algorithm
Publisher
Sakarya University Journal of Computer and Information Sciences
Reference39 articles.
1. [1] “Sıtma.”
[Online]. Available: https://hsgm.saglik.gov.tr/tr/zoonotikvektorel-sitma/detay.html.
2. [2] WHO, World malaria report 2020- WHO. 2020.
3. [3] “What is malaria?,” Global Health, Division of Parasitic Diseases and Malaria, 2021.
[Online]. Available: https://www.cdc.gov/.
4. [4] E. Soylu, T. Soylu, and R. Bayir, “Design and implementation of SOC prediction for a Li-Ion battery pack in an electric car with an embedded system,” Entropy, vol. 19, no. 4, 2017.
5. [5] Y. Karabacak and A. Uysal, “Fuzzy logic controlled brushless direct current motor drive design and application for regenerative braking,” in 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 2017, pp. 1–7.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classification of Electronics Components using Deep Learning;Sakarya University Journal of Computer and Information Sciences;2024-04-30