Affiliation:
1. Bülent Ecevit Üniversitei
2. SAKARYA ÜNİVERSİTESİ
Abstract
Skin cancer has emerged as a grave health concern leading to significant mortality rates. Diagnosis of this disease traditionally relies on specialist dermatologists who interpret dermoscopy images using the ABCD rule. However, the integration of computer-aided diagnosis technologies is gaining popularity as a means to assist clinicians in accurate skin cancer diagnosis, overcoming potential challenges associated with human error. The objective of this research is to develop a robust system for the detection of skin cancer by employing machine learning algorithms for skin lesion classification and detection. The proposed system utilizes Convolutional Neural Network (CNN), a highly accurate and efficient deep learning technique well-suited for image classification tasks. By using the power of CNN, this system effectively classifies various skin diseases in dermoscopic images associated with skin cancer The MNIST HAM10000 dataset, comprising 10015 images, serves as the foundation for this study. The dataset encompasses seven distinct skin diseases falling within the realm of skin cancer. In this study, diverse transfer learning methods were used and evaluated to enhance the performance of the system. By comparing and analyzing these approaches the highest accuracy rate was obtained using the MobileNetV2 model with a rate of 80.79% accuracy.
Publisher
Sakarya University Journal of Computer and Information Sciences
Reference22 articles.
1. [1] A. R. Ali, J. Li, and S. J. O’Shea, "Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images," Plos one, 2020.
2. [2] H. Alquran, I. A. Qasmieh, A. M. Alqudah, S. Alhammouri, E. Alawneh, A. Abughazaleh, and F. Hasayen, "The melanoma skin cancer detection and classification using support vector machine," 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), IEEE, pp. 1-5, 2017.
3. [3] K. Pai, and A. Giridharan, "Convolutional Neural Networks for classifying skin lesions," TENCON 2019-2019 IEEE Region 10 Conference (TENCON), IEEE, pp. 1794-1796, 2019.
4. [4] I. K. E. Purnama, et al., "Disease classification based on dermoscopic skin images using convolutional neural network in teledermatology system," 2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM). IEEE, pp. 1-5, 2019.
5. [5] H. Gupta, H. Bhatia, D. Giri, R. Saxena, and R. Singh, "Comparison and Analysis of Skin Lesion on Pretrained Architectures," International Research Journal of Engineering and Technology (IRJET), pp. 2704-2707, 2020.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Skin Cancer Classification with Channel Attention and SMOTE Sampling: A Deep Learning Approach;2023 6th International Conference on Electrical Information and Communication Technology (EICT);2023-12-07