Efficiency of biological control for fall armyworm resistant to the protein Cry1F

Author:

Souza C. S. F.1ORCID,Silveira L. C. P.1ORCID,Souza B. H. S.1ORCID,Nascimento P. T.1ORCID,Damasceno N. C. R.2ORCID,Mendes S. M.3ORCID

Affiliation:

1. Universidade Federal de Lavras, Brasil

2. Centro Universitário de Sete Lagoas, Brasil

3. Centro Nacional de Pesquisa de Milho e Sorgo, Brasil

Abstract

Abstract Understanding the ecological and toxicological relationship between genetically modified cultivars (GM) and biological control agents is of great importance for discussions related to the compatability of GM cultivars and integrated management strategies for pest resistance. The present study evaluated the search behavior and predatory capacity of Orius insidiosus (Say) (Hemiptera: Anthocoridae) and Doru luteipes (Scudder) (Dermaptera: Forficulidae) on eggs and caterpillars of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) resistant or not to the protein Cry1F expressed in Bt corn. To determine the search time, a stopwatch was run until the capture of the first prey, predation capacity was evaluated by counting the prey remaining after 24 hours of infestation. The injuries of S. frugiperda in genetically modified and conventional corn in the presence and absence of predators was also evaluated. The predators were not able to distinguish between resistant and susceptible prey (eggs or caterpillars), given the predatory behaviour observed. There was no difference in searching time or predatory capacity between the predators for eggs and caterpillars of either resistant or susceptible S. frugiperda. In the presence of predators, the injury scores for resistant S. frugiperda on the Bt corn plants were lower. It was concluded that O. insidiosus and D. luteipes did not notice the presence of the protein Cry1F in the prey S. frugiperda, which may facilitate the combined use of GM corn and biological control in integrated management programs and for management of pest resistance.

Publisher

FapUNIFESP (SciELO)

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3