Amino acids L-phenylalanine and L-lysine involvement in trans and cis piperamides biosynthesis in two Piper species

Author:

Cotinguiba F.1ORCID,Debonsi H. M.2ORCID,Silva R. V.3ORCID,Pioli R. M.2ORCID,Pinto R. A.3,Felippe L. G.3ORCID,López S. N.4ORCID,Kato M. J.5ORCID,Furlan M.3ORCID

Affiliation:

1. Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brasil; Universidade Federal do Rio de Janeiro, Brasil

2. Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brasil; Universidade de São Paulo, Brasil

3. Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brasil

4. Universidad Nacional de Rosario, Argentina; Centro Científico Tecnológico, Argentina

5. Universidade de São Paulo, Brasil

Abstract

Abstract Several Piper species accumulate piperamides as secondary metabolites, and although they have relevant biological importance, many details of their biosynthetic pathways have not yet been described experimentally. Experiments involving enzymatic reactions and labeled precursor feeding were performed using the species Piper tuberculatum and Piper arboreum. The activities of the phenylalanine ammonia lyase (PAL) enzymes, which are involved in the general phenylpropanoid pathway, were monitored by the conversion of the amino acid L-phenylalanine to cinnamic acid. The activity of the 4-hydroxylase (C4H) enzyme was also observed in P. tuberculatum by converting cinnamic acid to p-coumaric acid. L-[UL-14C]-phenylalanine was fed into the leaves of P. tuberculatum and incorporated into piperine (1), 4,5-dihydropiperine (2), fagaramide (4), trans-piplartine (7), and dihydropiplartine (9). In P. arboreum, it was only incorporated into the piperamide 4,5-dihydropiperiline (3). L-[UL-14C]-lysine was successfully incorporated into the 4,5-dihydropiperine piperidine group (2), dihydropyridinone, and trans- (7) and cis-piplartine (8). These data corroborate the proposal of mixed biosynthetic origin of piperamides with the aromatic moiety originating from cinnamic acid (shikimic acid pathway) and key amide construction with amino acids as precursors.

Publisher

FapUNIFESP (SciELO)

Subject

General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3