USE OF COMPUTATIONAL TOOLS AS SUPPORT TO THE CROSS-MAPPING METHOD BETWEEN CLINICAL TERMINOLOGIES

Author:

Gomes Denilsen Carvalho1ORCID,Oliveira Lucas Emanuel Silva e1ORCID,Cubas Marcia Regina1ORCID,Barra Claudia Maria Cabral Moro1ORCID

Affiliation:

1. Pontifícia Universidade Católica do Paraná, Brazil

Abstract

ABSTRACT Objective: to reflect on the use of computational tools in the cross-mapping method between clinical terminologies. Method: reflection study. Results: the cross-mapping method consists of obtaining a list of terms through extraction and normalization; the connection between the terms of the list and those of the reference base, by means of predefined rules; and grouping of the terms into categories: exact or partial combination or, in more detail, similar term, more comprehensive term, more restricted term and non-agreeing term. Performed manually in many studies, it can be automated with the use of the Unified Medical Language System (UMLS). Obtaining the terms list can occur automatically by natural language processing algorithms, being that the use of rules to identify information in texts allows the expert's knowledge to be coupled to the algorithm, and it can be performed by techniques based on Machine Learning. When it comes to mapping terms using the 7-Axis model of the International Classification for Nursing Practice (ICNP®), the process can also be automated through natural language processing algorithms such as POS-tagger and the syntactic parser. Conclusion: the cross-mapping method can be intensified by the use of natural language processing algorithms. However, even in cases of automatic mapping, the validation of the results by specialists should not be discarded.

Publisher

FapUNIFESP (SciELO)

Subject

General Nursing

Reference44 articles.

1. Representation of nursing terminologies in UMLS;Kim TY;Amia Annu Symp Proc,2011

2. ISO/TS 17117 de 2002: controlled health terminology: structure and high-level indicators,2002

3. Systematized Nomenclature of Medicine Clinical Terms - SNOMED CT,2014

4. Semantic interoperation and electronic health records: context sensitive mapping from SNOMED CT to ICD-10;Campbell JR;Stud Health Technol Inform,2013

5. Portaria 2073,2011

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3