Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil

Author:

Srbek-Araujo Ana Carolina1,Chiarello Adriano Garcia2

Affiliation:

1. Universidade Federal de Minas Gerais, Brazil; Vale S.A., Brazil

2. Universidade de São Paulo, Brazil

Abstract

The distribution of species and population attributes are critical data for biodiversity conservation. As a tool for obtaining such data, camera traps have become increasingly common throughout the world. However, there are disagreements on how camera-trap records should be used due to imperfect species detectability and limitations regarding the use of capture rates as surrogates for abundance. We evaluated variations in the capture rates and community structures of mammals in camera-trap surveys using four different sampling designs. The camera traps were installed on internal roads (in the first and fourth years of the study), at 100-200 m from roads (internal edges; second year) and at 500 m from the nearest internal road (forest interior; third year). The mammal communities sampled in the internal edges and forest interior were similar to each other but differed significantly from those sampled on the roads. Furthermore, for most species, the number of records and the capture success varied widely among the four sampling designs. A further experiment showed that camera traps placed on the same tree trunk but facing in opposing directions also recorded few species in common. Our results demonstrated that presence or non-detection and capture rates vary among the different sampling designs. These differences resulted mostly from the habitat use and behavioral attributes of species in association with differences in sampling surveys, which resulted in differential detectability. We also recorded variations in the distribution of records per sampling point and at the same spot, evidencing the stochasticity associated with the camera-trap location and orientation. These findings reinforce that for species whose specimens cannot be individually identified, the capture rates should be best used as inputs for presence and detection analyses and for behavior inferences (regarding the preferential use of habitats and activity patterns, for example). Comparisons between capture rates or among relative abundance indices, even for the same species, should be made cautiously.

Publisher

FapUNIFESP (SciELO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3