Detecção de cicatrizes de áreas queimadas baseada no modelo linear de mistura espectral e imagens índice de vegetação utilizando dados multitemporais do sensor MODIS/TERRA no estado do Mato Grosso, Amazônia brasileira

Author:

Anderson Liana Oighenstein1,Aragão Luiz Eduardo Oliveira e Cruz de2,Lima André de1,Shimabukuro Yosio Edemir1

Affiliation:

1. Instituto Nacional de Pesquisas Espaciais, Brasil

2. University of Oxford, United Kingdom

Abstract

O objetivo desta pesquisa foi avaliar os dados do sensor MODIS para detectar e monitorar cicatrizes de áreas recém queimadas. Utilizamos imagens da reflectância de superfície do sensor MODIS: produto MOD09 (dia 5 de outubro) e produto MOD13A1 (meses de outubro e novembro). Foi avaliada também uma série temporal de um ano dos índices de vegetação (IV) EVI e NDVI (produto MOD13A1). Uma imagem do sensor ETM+ (dia 5 de outubro) foi utilizada como base para a delimitação dos polígonos amostrais e avaliação dos dados MODIS devido a sua melhor resolução espacial. A metodologia focou na aplicação do modelo linear de mistura espectral nas imagens reflectância para a geração das imagens fração sombra. Análises de regressão foram efetuadas para comparação entre o percentual de sombra derivado da imagem ETM+ e das imagens MODIS. As alterações multitemporais nas imagens IV foram avaliadas com base no teste de Tukey. Os resultados mostraram que a imagem fração sombra gerada a partir do produto MOD09 apresentou um R² = 0,66 (p < 0,01) em relação aos dados ETM+. Para as imagens do produto MOD13A1 não foram identificadas relações significativas. Os IV dentro dos mesmos polígonos apresentaram uma variação sazonal durante o ano. No entanto, não houve uma diminuição significativa dos valores destes índices nos meses onde foram observadas as cicatrizes de áreas recém queimadas. Portanto, o produto MOD09 mostrou-se mais eficiente que o produto MOD13A1 para a detecção de cicatrizes de áreas recém queimadas. A análise multitemporal dos IV sugeriu que não foi possível detectar este mesmo padrão na área de estudo.

Publisher

FapUNIFESP (SciELO)

Subject

General Agricultural and Biological Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3