Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee

Author:

Silva Gabi Nunes1,Nascimento Moysés1,Sant’Anna Isabela de Castro2,Cruz Cosme Damião2,Caixeta Eveline Teixeira3,Carneiro Pedro Crescêncio Souza2,Rosado Renato Domiciano Silva2,Pestana Kátia Nogueira4,Almeida Dênia Pires de2,Oliveira Marciane da Silva2

Affiliation:

1. Universidade Federal de Viçosa, Brazil

2. UFV, Brazil

3. Embrapa Café, Brazil

4. Embrapa Mandioca e Fruticultura, Brazil

Abstract

Abstract: The objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science,Animal Science and Zoology

Reference40 articles.

1. Marcadores moleculares derivados de sequências expressas do genoma café potencialmente envolvidas na resistência à ferrugem;ALVARENGA S.M.;Pesquisa Agropecuária Brasileira,2011

2. Melhoramento visando a resistência do cafeeiro à ferrugem;BETTENCOURT A.J.;Bragantia,1968

3. Factores genéticos que condicionam a resistência às raças de Hemileia vastatrix Berk. et Br. dos clones-tipo dos grupos 1, 2 e 3 de derivados de Híbrido de Timor;BETTENCOURT A.J.;Broteria Genética,1992

4. Redes neurais artificiais: teoria e aplicações;BRAGA A. de P.,2011

5. Ministério da Agricultura, Pecuária e Abastecimento

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3