Soil chemical attributes restricting grain yield in Oxisols under no-tillage system

Author:

Corassa Geomar Mateus1,Santi Antônio Luís1,Silva Vanderlei Rodrigues da1,Baron Felipe Arthur1,Reimche Geovane Boschmann1,Fioresi Dejales1,Flora Diandra Pinto Della1

Affiliation:

1. Universidade Federal de Santa Maria, Brazil

Abstract

Abstract: The objective of this work was to identify soil chemical attributes restricting grain yield in Oxisols under the no-tillage system, using directed soil sampling. High, medium, and low yield zones were defined in two agricultural fields using historical yield data of several crops. The yield zones were defined based on the harvest maps of the following crops: corn in 2008/2009, white oat in 2009, and corn in 2012/2013 in field I, with 117.70 ha; and corn in 2009/2010, soybean in 2010/2011, and wheat in 2012 in field II, with 107.30 ha. Soil sampling points were georeferenced in each yield zone, where samples were collected at eight soil depths, spaced 0.05 m apart, totaling 80 variables. Low yields were associated with low cation exchange capacity, low phosphorus and organic matter contents, and high clay content. In both studied fields, the highest organic matter content in the subsurface layers was the main indicator of high yield. Soil sampling considering yield zones is an efficient strategy to identify chemical attributes restricting grain yield and also allows guiding more precise site-specific interventions.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the quality of the production environment;Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences;2024-08-12

2. A Bibliometric Network Analysis of Recent Publications on Digital Agriculture to Depict Strategic Themes and Evolution Structure;Sensors;2021-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3