Análise Bayesiana no estudo do tempo de retorno das precipitações pluviais máximas em Jaboticabal (SP)

Author:

Beijo Luiz Alberto1,Vivanco Mário Javier Ferrua2,Muniz Joel Augusto2

Affiliation:

1. Universidade Federal de Alfenas

2. Universidade Federal de Lavras

Abstract

Dados históricos de precipitação máxima são utilizados para realizar previsões de chuvas extremas, cujo conhecimento é de grande importância na elaboração de projetos agrícolas e de engenharia hidráulica. A distribuição generalizada de valores extremos (GEV) tem sido aplicada com freqüência nesses tipos de estudos, porém, algumas dificuldades na obtenção de estimativas confiáveis sobre alguma medida dos dados têm ocorrido devido ao fato de que, na maioria das situações, tem-se uma quantidade escassa de dados. Uma alternativa para obter melhorias na qualidade das estimativas seria utilizar informações dos especialistas de determinada área em estudo. Sendo assim, objetiva-se neste trabalho analisar a aplicação da Inferência Bayesiana com uma distribuição a priori baseada em quantis extremos, que facilite a incorporação dos conhecimentos fornecidos por especialistas, para obter as estimativas de precipitação máxima para os tempos de retorno de 10 e 20 anos e seus respectivos limites superiores de 95%, para o período anual e para os meses da estação chuvosa em Jaboticabal (SP). A técnica Monte Carlo, via Cadeias de Markov (MCMC), foi empregada para inferência a posteriori de cada parâmetro. A metodologia Bayesiana apresentou resultados mais acurados e precisos, tanto na estimação dos parâmetros da distribuição GEV, como na obtenção dos valores de precipitação máxima provável para a região de Jaboticabal, apresentando-se como uma boa alternativa na incorporação de conhecimentos a priori no estudo de dados extremos.

Publisher

FapUNIFESP (SciELO)

Subject

Soil Science,General Veterinary,Agronomy and Crop Science,Animal Science and Zoology,Food Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3