Affiliation:
1. Universidade Federal de Alfenas
2. Universidade Federal de Lavras
Abstract
Dados históricos de precipitação máxima são utilizados para realizar previsões de chuvas extremas, cujo conhecimento é de grande importância na elaboração de projetos agrícolas e de engenharia hidráulica. A distribuição generalizada de valores extremos (GEV) tem sido aplicada com freqüência nesses tipos de estudos, porém, algumas dificuldades na obtenção de estimativas confiáveis sobre alguma medida dos dados têm ocorrido devido ao fato de que, na maioria das situações, tem-se uma quantidade escassa de dados. Uma alternativa para obter melhorias na qualidade das estimativas seria utilizar informações dos especialistas de determinada área em estudo. Sendo assim, objetiva-se neste trabalho analisar a aplicação da Inferência Bayesiana com uma distribuição a priori baseada em quantis extremos, que facilite a incorporação dos conhecimentos fornecidos por especialistas, para obter as estimativas de precipitação máxima para os tempos de retorno de 10 e 20 anos e seus respectivos limites superiores de 95%, para o período anual e para os meses da estação chuvosa em Jaboticabal (SP). A técnica Monte Carlo, via Cadeias de Markov (MCMC), foi empregada para inferência a posteriori de cada parâmetro. A metodologia Bayesiana apresentou resultados mais acurados e precisos, tanto na estimação dos parâmetros da distribuição GEV, como na obtenção dos valores de precipitação máxima provável para a região de Jaboticabal, apresentando-se como uma boa alternativa na incorporação de conhecimentos a priori no estudo de dados extremos.
Subject
Soil Science,General Veterinary,Agronomy and Crop Science,Animal Science and Zoology,Food Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献