Vertical hydraulic gradient research in hyporheic zone of Beberibe river in Pernambuco State (Brazil)

Author:

Veras Tatiane Barbosa1,Cabral Jaime Joaquim da Silva Pereira1,Paiva Anderson Luiz Ribeiro de1,Barcellos Roberto Lima1,Santos Laércio Leal dos2

Affiliation:

1. Universidade Federal de Pernambuco, Brazil

2. Universidade Estadual da Paraíba, Brazil

Abstract

ABSTRACT The interaction between groundwater and surface water occurs naturally and is dependent on the dynamics in the hyporheic zone. The hyporheic zone is the interface between the surface water source and the phreatic aquifer and it’s a system that also influences the water quality. An important feature is the ability to flux in this zone. This work aimed to evaluate the vertical hydraulic gradient in the hyporheic zone at two points in Beberibe river, Olinda-PE, to understand the hyporheic environment characteristics and water flow dynamics in experimental area, in addition to identify the existence of hydraulic connection between surface water and groundwater. The experimental phase consisted of infiltration tests in riverbed with cylinder infiltrometer and vertical hydraulic gradients readings with differential piezometer, complemented with grain size information, for an assessment of the water budget between the river and the aquifer. Analyzing the behavior of the interaction over the period of 10 months, it was observed that the Beberibe river (middle course) contributes to the groundwater recharge in most of the time. The average infiltration rate was 1.02 mm/min in point 1 and 0.85 mm/min in point 2. It was concluded that there is a variability in flow direction, which often is top-down, but may undergo change in the stream showing upstream after long periods of rainfall. Another conclusion is that grain size distribution of bed sediment, that is predominantly sandy, influences hydraulic conductivity of hyporheic zone and influences consequently the vertical flow rates.

Publisher

FapUNIFESP (SciELO)

Subject

Earth-Surface Processes,Water Science and Technology,Aquatic Science,Oceanography

Reference37 articles.

1. NBR 7181: solo: análise granulométrica,1984

2. Dados climatológicos,2014

3. Caracterização da interação entre rio e aqüífero com o uso de infiltrômetros;Arantes E. J.;Águas Subterrâneas,2006

4. Defining the hyporheic zone in a large tidally influenced river;Bianchin M. S.;Journal of Hydrology,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3