Combination of the SCS-CN and the GRADEX models to maximum flow estimation

Author:

Mota Tainá1,Naghettini Mauro2,Fernandes Wilson2,Silva Francisco2

Affiliation:

1. Universidade Federal de Minas Gerais, Brasil; Câmara de Comercialização de Energia Elétrica, Brasil

2. Universidade Federal de Minas Gerais, Brasil

Abstract

ABSTRACT The absence of hydrometric monitoring of adequate extension, periodicity, temporal resolution and quality is the Brazilian reality in many drainage basins. It’s common the use of rainfall-runoff models of simple application to determine rainfall excess volumes, such as the SCS-CN method. Although the SCS method is broadly accepted, many authors have questioned the results derived from its application to catchments with distinct characteristics than those studied during its original formulation. An alternate method for maximum flow estimation in catchments with scarce monitoring is the GRADEX method, which proposes extrapolation of the flood volumes’ frequency curve from precipitation series. Despite being a consolidated method, it is rarely used in Brazil because of the difficulties found in fulfilling its initial hypotheses. This paper suggests, therefore, the combination of both methods, aiming for a methodology that better describes the uncertainties involved in the determination of the direct flood volumes’ probability distribution. The case study is conducted on the Serra Azul river catchment, Juatuba – MG, which offers 12 years of continuous records. The referred combination occurs on the definition of the lower and upper boundaries of the probability distribution of global water retention in the soil and in the catchment, as embedded in the GRADEX method, from the CNASYMPTOTIC concept. The modelled scenarios bear evidence of the many possibilities that may exist in the extrapolation of the frequency curve of surface runoff volumes suggests a range of results that better underpins the definition of the saturation condition and, consequently, the maximum rainfall excess calculation, as compared to the originally proposed methods.

Publisher

FapUNIFESP (SciELO)

Subject

Earth-Surface Processes,Water Science and Technology,Aquatic Science,Oceanography

Reference29 articles.

1. Beyond the SCS-CN method: a theoretical framework for spatially lumped rainfall-runoff response;BARTLETT M. S.;Water Resources Research,2016

2. Applied hydrology;CHOW V. T. C.,1988

3. Avaliação do tipo de distribuição de probabilidades das vazões máximas diárias anuais no Brasil;COSTA K. T.;Revista Brasileira de Recursos Hídricos,2015

4. L’Application de la Méthode du Gradex à l’estimation des Crues de Faible Fréquence,1972

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3