Ocean surface change detection from remote sensing image based on stochastic similarity measure

Author:

Braga Ian Henrique Teles1ORCID,Sacramento Vinicius Pereira do1ORCID,Oliveira Lígia Claudia Castro de2ORCID,Medeiros Fátima Nelsizeuma Sombra de3ORCID,Rodrigues Francisco Alixandre Ávila1ORCID

Affiliation:

1. Universidade Federal do Cariri, Brasil

2. Universidade Regional do Cariri, Brasil

3. Universidade Federal do Ceará, Brasil

Abstract

ABSTRACT Change detection based on remote sensing images, has attracted increasing attention from researchers throughout the world. The synthetic aperture radar (SAR) images have become key resources for detecting changes on the land surface. However, due to the presence of speckle noise and its stochastic nature, SAR data require methodologies that consider these peculiarities. This article presents a similarity measure that considers the randomness present in SAR data. To retrieve the random component in the SAR data, we used the stochastic distance. The similarity measure is carefully elaborated as a function of the stochastic distance such that its variation space is the interval [0, 1], facilitating its interpretation. Our proposal shows promising results in two applications: contrast evaluation, ocean surface change detection and binary change map. It is noteworthy that the possible limitations of our proposal are investigated through simulations guided by a Monte Carlo experiment.

Publisher

FapUNIFESP (SciELO)

Subject

Earth-Surface Processes,Water Science and Technology,Aquatic Science,Oceanography

Reference28 articles.

1. Mathematical methods for physicists.;Arfken G. B.,2005

2. Change detection techniques for remote sensing applications: a survey;Asoka A.;Earth Science Informatics,2019

3. Classification of detected changes from multitemporal high-res xband SAR images: intensity and texture descriptors from superpixels;Barreto T.;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016

4. Application of logcumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images;Bujor F.;IEEE Transactions on Geoscience and Remote Sensing,2004

5. An improved scheme for parameter estimation of g distribution model in high-resolution sar images;Cheng J.;Progress in Electromagnetics Research,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3