Prediction of monthly flows for Três Marias reservoir (São Francisco river basin) using the CFS climate forecast model

Author:

De Paiva Luana Ferreira Gomes1ORCID,Montenegro Suzana Maria1ORCID,Cataldi Marcio2ORCID

Affiliation:

1. Universidade Federal de Pernambuco, Brasil

2. Universidade Federal Fluminense, Brasil

Abstract

ABSTRACT Despite the water crisis in 2016, 76% of the energy in Brazil was generated by hydroelectric plants, which shows that the Brazilian system is still strongly dependent on the hydrological conditions of basins. Therefore, the flow forecasts for these plants subsidize the decision making within the scope of the Electric Sector, since they allow the evaluation of the operational conditions of the hydroelectric and thermoelectric plants through the use of energy optimization models, providing gains in the operations of SIN (Sistema Interligado Nacional – the Brazilian National Interconnected System). The precipitation forecast is of fundamental importance for the elaboration of these hydroelectric flow forecasts. For energy evaluations, the DECOMP and NEWAVE models are used, with the GEVAZP model being applied to generate scenarios through an AR (p) (autoregressive) model. Accordingly, this study shows the impact of precipitation forecast on flow predictions in the climate horizon. For this, a statistical correction was made in the rain predicted by the CFS (Climate Forecast System) model, which tends to overestimate the predicted rain, with rainfall-flow models being calibrated. Tests were performed with this new modeling system and the results, in the form of scenarios, were compared with the scenarios generated by the GEVAZP model, showing the possibility of reducing the generated range by the latter, consequently causing the DECOMP model to not consider ranges with little or no probability of occurrence, which can improve the optimization of the SIN operation planning. This work also shows that the SMAP model exhibited better performance when compared to the Neural Networks model, in terms of the average flow range predicted in relation to the observed flow. There was a clear improvement in the flow predictions with the incorporation of the rain observed one month ahead in the simulations, mainly in the forecast of high flows. Finally, the climate indices had a good relationship with the flow and rain variables.

Publisher

FapUNIFESP (SciELO)

Subject

Earth-Surface Processes,Water Science and Technology,Aquatic Science,Oceanography

Reference27 articles.

1. Plano de recursos hídricos da bacia do São Francisco,2004

2. Developing subseasonal to seasonal climate forecast products for hydrology and water management;Baker S. A.;Journal of the American Water Resources Association,2019

3. Análise de Previsões de Precipitação obtidas com a utilização do modelo ETA como insumo para modelos de previsão semanal de vazão natural;Cataldi M.;Revista Brasileira de Recursos Hídricos,2007

4. Manual de referência do Modelo Dessem.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3