Combinations of distance measures and clustering algorithms in pepper germplasm characterization

Author:

Gomes Gisely Paula1ORCID,Baba Viviane Yumi1ORCID,Santos Odair P dos1ORCID,Sudré Cláudia P2ORCID,Bento Cintia dos S3ORCID,Rodrigues Rosana2ORCID,Gonçalves Leandro SA1ORCID

Affiliation:

1. Universidade Estadual de Londrina, Brazil

2. Universidade Estadual do Norte Fluminense, Brazil

3. Universidade Federal do Espirito Santo, Brazil

Abstract

ABSTRACT Characterization and evaluation of genotypes conserved in the germplasm banks have become of great importance due to gradual loss of genetic variability and search for more adapted and productive genotypes. This can be obtained through several ways, generating quantitative and qualitative data. Joint analysis of those variables may be considered a strategy for an accurate germplasm characterization. In this study we aimed to evaluate different clustering techniques for characterization and evaluation of Capsicum spp. accessions using combinations of specific measures for quantitative and qualitative variables. A collection of 56 Capsicum spp. accessions was characterized based on 25 morphoagronomic descriptors. Six quantitative distances were used [A1) average of the range-standardized absolute difference (Gower), A2) Pearson correlation, A3) Kulczynski, A4) Canberra, A5) Bray-Curtis, and A6) Morisita] combined with distance for qualitative data [Simple Coincidence (B1)]. Clustering analyses were performed using agglomerative hierarchical methods (Ward, the nearest neighbor, the farthest neighbor, UPGMA and WPGMA). All combined distances were highly correlated. UPGMA clustering was the most efficient through cophenetic correlation and 2-norm analyses, showing a concordance between the two methods. Six clusters were considered an ideal number by UPGMA clustering, in which Gower distance showed a better adjustment for clustering. Most combined distances using UPGMA clustering allowed the separation of the accessions in relation to species, using both quantitative and qualitative data, which could be an alternative for simultaneous joint analysis, aiming to compare different clusters.

Publisher

FapUNIFESP (SciELO)

Subject

Horticulture,Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3