Abstract
Silicon (Si) fertilizers have been increasingly used in agriculture due to several benefits as acidity correction in tropical soils and positive effects on the development of grasses. Nutrient availability and plant nutrition play an important role in seed production and may affect the physiological quality of white oat seeds. The present study had as objective to evaluate seed germination and seedling development of white oat (Avena sativa L.) affected by silicon and phosphorus fertilization. The experimental design was the completely randomized, analyzed as a factorial 2 x 4, with six replications. Treatments consisted of 20 and 200 mg dm-3 of P2O5, applied as triple superphosphate, combined with 0, 150, 300 and 450 mg dm-3 of Si, as potassium silicate. The experiment was carried out in greenhouse, with seven plants per 15-L pot. Panicles were harvested and threshed manually and white oat seeds were stored in paper bags under normal environmental conditions. Seeds were evaluated by moisture content, seed weight, germination, electrical conductivity, seedling length and dry matter. White oat seeds with better quality are produced with 20 mg dm-3 of P2O5 under any Si doses. Higher seed germination and vigor is obtained with 300 and 450 mg dm-3 of K2SiO3, respectively. Silicon doses decreased root and total seedling length similarly up to the dose of 300 kg ha-1 but P dose only influenced seedling development distinctively whenever applied with the higher silicon dose.
Subject
Agronomy and Crop Science,Animal Science and Zoology
Reference50 articles.
1. Relationship between soybean seed coat lignin content and resistance to mechanical damage;Alvarez P.J.C;Seed Science and Technology
2. Effects of silica level on some proprieties of Oryza sativa straw and hult;Balastra M.L.F;Canadian Journal of Botany
3. Brazilian Rules for Seed Analysis,1992
4. Response of seven oat varieties to different levels of fertilization;Brown A.R;Agronomy Journal
5. Seeds: Science, Technology and Production;Carvalho N.M,2000
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献