Abstract
The citrus sudden death (CSD) disease affects dramatically citrus trees causing a progressive plant decline and death. The disease has been identified in the late 90's in the main citrus production area of Brazil and since then there are efforts to understand the etiology as well as the mechanisms its spreading. One relevant aspect of such studies is to investigate spatial patterns of the occurrence within a field. Methods for determining whether the spatial pattern is aggregated or not has been frequently used. However it is possible to further explore and describe the data by means of adopting an explicit model to discriminate and quantify effects by attaching parameters to covariates which represent aspects of interest to be investigated. One alternative involves autologistic models, which extend a usual logistic model in order to accommodate spatial effects. In order to implement such model it is necessary to take into account the reuse of data to built spatial covariates, which requires extensions in methodology and algorithms to assess the variance of the estimates. This work presents an application of the autologistic model to data collected at 11 time points from citrus fields affected by CSD. It is shown how the autologistic model is suitable to investigate diseases of this type, as well as a description of the model and the computational aspects necessary for model fitting.
Subject
Agronomy and Crop Science,Animal Science and Zoology
Reference21 articles.
1. Spatial and temporal analyses of citrus sudden death as a tool to generate hypotheses concerning its etiology;BASSANEZI R.B.;Phytopathology,2003
2. Nearest-neighbour systems and the auto-logistic model for binary data;BESAG J.;Journal of the Royal Statistics Society,1972
3. 'Statistical analysis of non-lattice data';BESAG J.;The Statistician,1975
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献