Abstract
Some diazotrophic bacteria can fix nitrogen biologically in gramineous host plants. Generally, gramineous plants are also associated with mycorrhizal fungi, that can improve mainly plant P uptake. Among the factors affecting plant-microbe interactions, the plant genotype plays an important role. This study evaluates the effect of diazotrophic bacteria and an arbuscular mycorrhizal fungus (AMF), on five genotypes of maize (Zea mays L.), in relation to plant biomass, shoot N and P concentrations, and fine root morphological traits. The experimental design was entirely randomized in a factorial 5 × 4 × 2 arrangement, i.e., five maize genotypes (hybrids C333B, AS3466, and PREMIUM, and the inbreed lines lg40897-1 and lg40505-1), three diazotrophic bacteria (Azospirillum lipoferum, A. amazonense, and Burkholderia sp.) in addition to a control without bacterial inoculation, co-inoculated or not with the AMF Glomus clarum. The non-mycorrhizal plants inoculated with Azospirillum exhibited the highest N concentrations. The lines lg40897-1 and lg40505-1 showed higher P concentrations as compared to the hybrids, mainly when colonized by AMF. The higher levels of mycorrhizal colonization (90%) occurred in the C333B and lg40897-1 genotypes, which also exhibited a greater root diameter. Mycorrhiza increased shoot and root biomass, besides root traits as total length, specific length, total surface, and incidence of root hairs in all genotypes. In addition, mycorrhiza also stimulated the root colonization by diazotrophic bacteria. The bacteria did not affect root morphological traits and mycorrhizal colonization.
Subject
Agronomy and Crop Science,Animal Science and Zoology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献