Affiliation:
1. Universidade de São Paulo, Brasil
Abstract
O projeto de arranjo físico modular tem como base o agrupamento de máquinas em módulos a partir de subseqüências de operações comuns a um conjunto de peças. No método proposto por Huang (2003), os módulos de arranjo físico são gerados por análise de agrupamentos. O presente trabalho apresenta uma forma alternativa à geração de módulos de arranjo físico, através de algoritmo genético de agrupamento (AGA). O AGA permite ao usuário especificar a priori o número desejado de módulos (problema de K-agrupamentos), e também trabalhar de forma que o número e a formação dos módulos sejam variáveis de decisão do problema (problema de agrupamento automático). Uma característica importante do AGA é sua flexibilidade, pois fornece a possibilidade ao usuário de interagir com o método de solução através da escolha de diferentes codificações do cromossomo, de medidas de similaridade para comparação de seqüências de operações e de métodos de geração da nova população. Para tal foram desenvolvidos dois operadores de cruzamento e três operadores de mutação. No exemplo apresentado, os módulos de arranjo físico gerados pelo AGA e o arranjo físico final da fábrica foram comparados aos de Huang (2003) e houve importante redução da distância total percorrida pelo conjunto de peças, demonstrando a eficácia do algoritmo genético de agrupamento. Dessa forma, os resultados apontaram o AGA como uma alternativa à geração de módulos de arranjo físico em projeto de arranjo físico modular.
Subject
Industrial and Manufacturing Engineering,Business and International Management
Reference19 articles.
1. Procedimento para projeto de arranjo físico modular em manufatura através de algoritmo genético de agrupamento;ARGOUD A. R. T. T.,2007
2. Formation of independent flow-line cells based on operation requirements and machine capabilities;ASKIN R. G.;IIE Transactions,1998
3. Next generation factory layout: research challenges and recent progress;BENJAAFAR S.;Interfaces,2002
4. Clustering with genetic algorithms;COLE R. M.,1998
5. A novel genetic algorithm for automatic clustering;GARAI G.;Pattern Recognition Letters,2004
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献