Abstract
Este artigo trata do problema de programação de tarefas flow shop permutacional. Diversos métodos heurísticos têm sido propostos para tal problema, sendo que um dos tipos de método consiste em melhorar soluções iniciais a partir de procedimentos de busca no espaço de soluções, tais como Algoritmo Genético (AG) e Simulated Annealing (SA). Uma idéia interessante que tem despertado gradativa atenção refere-se ao desenvolvimento de métodos heurísticos híbridos utilizando Algoritmo Genético e Simulated Annealing. Assim, o objetivo é combinar as técnicas de tal forma que o procedimento resultante seja mais eficaz do que qualquer um dos seus componentes isoladamente. Neste artigo é apresentado um método heurístico híbrido Algoritmo Genético-Simulated Annealing para minimizar a duração total da programação flow shop permutacional. Com o propósito de avaliar a eficácia da hibridização, o método híbrido é comparado com métodos puros AG e SA. Os resultados obtidos a partir de uma experimentação computacional são apresentados.
Subject
Industrial and Manufacturing Engineering,Business and International Management
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献